1904/104 CHEMISTRY TECHNIQUES I June/July 2019

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN SCIENCE LABORATORY TECHNOLOGY

* MODULE I

CHEMISTRY TECHNIQUES I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination: Answer booklet;

Non-programmable scientific calculator (battery operated).

This paper consists of TWO sections; A and B.

Answer ALL the questions in section A and any TWO questions from section B.

Each question in section A carries 4 marks while each question in section B carries 20 marks.

Maximum marks for each part of a question are indicated.

Candidates should answer the questions in English.

This question paper consists of 6 printed pages.

Candidates must check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2019 The Kenya National Examinations Council

Turn over

SECTION A (60 marks)

		Answer ALL the questions in this section SCIENCE OF SCIENCE OF	
1.	Define	the following terms:	1
	(a)	shoulded about the	/* (1 mark)
	(b)	chemical change:	(1 mark)
	(c)	solvent; 1) salid poil of a sheet to praction.	(I mark)
	(d)	sublimation. Note 12 1/12	(1 mark)
2.	Give t	he name of the process involved in each of the following transformations:	
	(a)	solid - liquid: An I Vande	(1 mark)
	(b)	liquid - solid; William A Liquid	(1 mark)
	(c)	liquid gas 549 fire	(1 mark)
	(d)	gas liquid	(1 mark)
	(6)		(11000)
3.	(a)	Define an alkali. Who has all all all all all all all all all a	(1 mark)
	(b)	List any three alkalis.	(3 marks)
4.	List fo	our types of chemical bonding.	(4 marks)
5.	Write	down the s, p, d, f electronic configuration of the following elements:	Н
	(a)	hydrogen; Helicon 2 1 8 8 6	NOF Neor
	(b) ,		
	(c) -	notassium:	
	(d)	sodium.	(4 marks)
		Corban	
6.	(a)	Define the term "indicator". Nitingen	(1 mark)
ol catte			
	(b)	Calculate the pH of a 0.01 M ethanoic acid solution. ($\alpha = 4.2 \times 10^{-2}$).	(3 marks)
477 2011			1202000
Hon	AND DESCRIPTIONS OF THE PERSON NAMED IN	of iron completely reacted with 100 cm ³ of 2.2 M hydrochloric acid. Calcu	
6	relativ	ve atomic mass of iron.	(4 marks)
8.	3.15 g	of nitric acid was dissolved in water and diluted to 250 cm3. Calculate the	molarity of
	the ac	id.	
	(H =	1, N = 14, O = 16)	(4 marks)
9.	State	the names given to elements which belongs to the following groups in the pe	riodic table:
	(a)	Group I;	(1 mark)
	(b)	Group II;	(1 mark)
	(c)	Group VII;	(1 mark)
	(d)	Group VIII.	(1 mark)
1904/1	04	2	

June/July 2019

10. An e		element Y has electronic configuration 2,8,5.		
	(a)	State the period to which the element belong.	(1 mark)	
	(b)	Write a formula of the most stable anion of Y.	(1 mark)	
	(c)	Write the electronic configuration of the ion of Y.	(1 mark)	
	(d)	What is the difference between the atomic radius of element Y and its ionic r	adius?	
			(I mark)	
11.	(a)	Define the term "salt".	(1 mark)	
	(b)	Describe how a solid sample of zinc (II)carbonate can be prepared starting w	ith zinc	
		oxide.	(3 marks)	
12.	A cor	mpound contains 69.42% carbon, 4.13% hydrogen and the rest is oxygen. Dete	rmine its	
	empi	rical formulae. $(C = 12, H = 1, 0 = 16)$.	(4 marks)	
	100	" " Jog. 10 ged and all	(4 marks)	
13.	(a)	State the Le-charteliers principle.	(1 mark)	
		State the Le-charteliers principle.		
	(b)	State three factors which affect the equilibrium constant.	(3 marks)	
14.	Draw	the structure of the following compounds:		
		M		
	(a)	3-methyl butan-Lol: 6		
	(b)	2-methyl butan-1-ol.		
	(c)	Butan-2-ol.		
	(d)	Butan-1-ol.	(4 marks)	
15.		any four applications of alkanols. As a Cold 13 SEP 2019	(4 marks)	
		the methyleted spring - 00000 NAME		
		SECTION B (40 marks)		
		Answer any TWO questions from this section.		
16.	(a)	Define the following terms as used in volumetric analysis: which are standard solution: (i) standard solution: (ii) molarity; as of moles in a plan per solument thread the solution:	ur as either	
		15 a Solution of Mooder Edition or December	or Monday solution	
		(i) standard solution:	(1 mark)	
		(ii) molarity; as of winter wasser	(1 mark)	
		(iii) molarity; no of molar per molar wase (iii) mole; trans in grows per molar wase	(1 mark)	
		(iii) mole; mass in global ton delivered by bueller (iv) titrant. Securin con delivered by bueller	(1 mark)	
	(b)	25 cm ³ of a 0.12 M sodium hydroxide were neutralised by 30 cm ³ of a solution	on of a	
	1000	diabasic acid (H2X) containing 6.3 grammes per litre. Calculate the relative		
		mass of the acid. NaOH 4 H x	(10 marks)	
		NOH THE NOX +40		
1904		3	Turn over	
June/	hely 2019			

- 10 cm3 solution containing chloride ions was treated with excess silver nitrate solution (c) to precipitate 0.4368 g of silver chloride. Calculate the molarity of the chloride ions in the solution. (Ag = 108, CI = 35.5) (6 marks)
- Calculate the amount of calcium carbonate required to produce 500 ppm calcium ions 17. (a) solution in a 500 ml volumetric flask. (Ca = 40, C = 12, O = 16). (6 marks)
 - (b) List any three advantages of EDTA as a standard in complexionetric titrations.

(3 marks)

- 10 g of an impure iron (II) salt was dissolved in water and made up to 250 ml in a (c) volumetric flask. 20 cm3 of this solution required 25 cm3 of 0.04 M potassium permanganate for complete reaction in a an acid media. Calculate the percentage of iron(II) in the original sample. (Fe = 56) (6 marks)
- Table I below shows the mass number and atomic numbers of atoms T to Z. (d) noof protons & leibnes

Table I

	Atom	Mass Number	Atomic Number	
	T	2	1	
ı	V	3	1	
١	W	3	2	
١	X	6	3	
ı	Y	9	4 ,	
į	Z	11	5 0	

- 1. protons in Y;
- И. electrons in W;
- III. neutrons in Z.

- Which atoms are: (ii)
 - I. isotopes of the same elements;

П. noble gas. (I mark)

(1 mark)

18. Give the IUPAC name of each of the following compounds: (a)

(1 mark)

CH,C == C CH, CH, (ii)

(I mark)

- (c) Transform the following word equations into balanced chemical equations.
 - (i) Calcium + Dilute Nitric → Calcium (II) Nitrate + Water. Hydroxide acid (2 marks)
 - (ii) Magnesium + oxygen Heat ➤ Magnesium oxide. (2 marks)
- (d) List any two differences between:
 - (i) physical and chemical change; (4 marks) (ii) electrovalent and covalent bonding. (4 marks)

THIS IS THE LAST PRINTED PAGE.

